Proof Theory

نویسنده

  • Jeremy Avigad
چکیده

Proof theory began in the 1920’s as a part of Hilbert’s program, which aimed to secure the foundations of mathematics by modeling infinitary mathematics with formal axiomatic systems and proving those systems consistent using restricted, finitary means. The program thus viewed mathematics as a system of reasoning with precise linguistic norms, governed by rules that can be described and studied in concrete terms. Today such a viewpoint has applications in mathematics, computer science, and the philosophy of mathematics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A short proof of the maximum conjecture in CR dimension one

In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...

متن کامل

A New Proof of FDR Control Based on Forward Filtration

For multiple testing problems, Benjamini and Hochberg (1995) proposed the false discovery rate (FDR) as an alternative to the family-wise error rate (FWER). Since then, researchers have provided many proofs to control the FDR under different assumptions. Storey et al. (2004) showed that the rejection threshold of a BH step-up procedure is a stopping time with respect to the reverse filtration g...

متن کامل

Fuzzy Linear Programming and its Application for a Constructive Proof of a Fuzzy Version of Farkas Lemma

The main aim of this paper is to deal with a fuzzy version of Farkas lemma involving trapezoidal fuzzy numbers. In turns to that the fuzzy linear programming and duality theory on these problems can be used to provide a constructive proof for Farkas lemma. Keywords Farkas Lemma, Fuzzy Linear Programming, Duality, Ranking Functions.

متن کامل

Frobenius kernel and Wedderburn's little theorem

We give a new proof of the well known Wedderburn's little theorem (1905) that a finite‎ ‎division ring is commutative‎. ‎We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group‎ ‎theory to build a proof‎.

متن کامل

Some results on the block numerical range

The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.

متن کامل

Application of Graph Theory: Relationship of Topological Indices with the Partition Coefficient (logP) of the Monocarboxylic Acids

It is well known that the chemical behavior of a compound is dependent upon the structure of itsmolecules. Quantitative structure – activity relationship (QSAR) studies and quantitative structure –property relationship (QSPR) studies are active areas of chemical research that focus on the nature ofthis dependency. Topological indices are the numerical value associated with chemical constitution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004